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ABSTRACT 

The work reported on this contract took place between 1 August 1963 

and 31 July 1964 and is summarized in the following two papers: 

(1) Analysis Techniques for Determining Mass Motions in the Upper 

Atmosphere from Chemical Releases 

(2) Turbulence in the Upper Atmosphere 

The first report describes analysis techniques which were developed for 

determining motions in the upper atmosphere from triangulation photography 

of cnemical releases and was published as AFCRL report No. 64-187 in January 

1964. Only the abstract of this report will be presented. 

The report on turbulence has not been published previously and will be 

presented in complete form,, The upper atmosphere parameters which will be 

discussed are vertical autocorrelation scale of the mean winds, motion spectrum 

scale of the mean rinds, motion spectrum of the turbulent winds, mixing length 

scale, scale of the smallest eddies, correlation scales of the turbulent 

velocities, dissipation length parameter from turbulent winds, globule size 

scales and cutoff altitude, time scales of motion, energy balance of the 

motion, and criteria for the onset of turbulence. 

The upper atmosphere motions such as are reported here will "reshape" 

missile trails into similar configurations. Hence from the detailed know- 

ledge of the characteristics which missile trails will take in  the upper 

atmosphere, it should be less difficult to develop apparatus for controlling 

and/or detecting missile trails. 
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ANALYSIS TECHNIQUES FOR DETERMINING MASS MOTIONS 

IN THE UPPER ATMOSPHERE FROM CHEMICAL RFXEASES* 

C. G. Justus, H. D. Edwards, R. N. Fuller 
Georgia Institute of Technology 

Atlanta, Georgia 

ABSTRACT 

Analysis procedures are presented for determining mass motions in the 

upper atmosphere by photographic triangulation and tracking of artificial 

clouds produced by chemical releases. Techniques are given both for clouds 

which have identifiable features which can be tracked and for trail clouds 

which have few or no identifiable features, A discussion of various coordi- 

nate systems necessary for both the determination of camera orientation and 

the triangulation calculations is also included. All of these coordinate 

systems are suitable for an earth which is an ellipsoid of revolution which 

is the assumption made. 

* This report was published as Scientific Report No. 1, January 1964, 
AFCRL Report No. 64-187. 



TURBULENCE U THE UPPER ATMOSPHERE 

C. G. Justus and H.. D. Edwards 
Georgia Institute of Technology 

Atlanta, Georgia 

ABSTRACT 

By direct investigation of fluctuating turbulent velocities determined 

from chemical releases, data have been obtained which indicate that turbulence 

observed up to altitudes near 105 km is ambient turbulence, produced by wind 

shears. This turbulence is Isotropie only for scales =0 1 km or less. The 

smallest eddies are on the order of 20 m in size with characteristic velocities 

and times of about 2 m/sec and 10 sec. The 'arges4 eddies observed are about 

6 km in site with characteristic velocities and times of about 15 m/sec and 

400 sec. It is thought that tidal waves and gravity wave components may 

account for the major portion of all velocity fluctuations with size scales 

greater than 6 km. 

The turbopause, or upper height limit of turbulence of the scales observed, 

usually occurs within + 5 km of the 105 km level. This cutoff altitude appears 

to be the result of the rate of energy supplied by the wind shears becoming too 

small to maintain the  turbulence in the presence of a dissipation rate which is 

increasing rapidly with altitude. 

Growth measurements on diffusing globules produced in the chemical release 

clouds indicates that the Batchelor form of turbulent diffusion is applicable 

in this height range. 



INTRODUCTION 

Edwards et al (1963) and other groups have reported that chemical release 

clouds usually become globular in appearance below some altitude, usually 

around 105-110, It is presumed that these globules are associated with 

turbulence but there remains some question (Nawrocki and Papa (1963) and Cote 

(1962) ) as to whether this turbulence is naturally occurring amöient 

tui-bulence or Is in some way produced by either the ejection mechanism or a 

reaction of the ejection vehicle with the ambient. 

In the following report an attempt is made to examine the turbulence 

quantitatively, comparing results whenever possible with the predictions 

of existing turbulence theories. It is hoped that these results will shed 

some light on this problem of the exact cause of the turbulence. 

in an attempt to unify the thinking with regard to turbulence and 

turbulent eddies Stewart (1959) proposed the following definitions: 

Turbulence - "A fluid is said to be turbulent if each component of the velocity 

is distributed irregularly and aperiodically in time and space, if the flow is 

characterized by a transfer of energy from larger to smaller scales of motion, 

and if the mean separation of neighboring fluid particles tends to increase 

with time." 

Eddy - /n eddy is "a volume of fluid moving more or less coherently with respect 

to the mean flow." 

These definitions exclude from the realm of turbulence such two dimen- 

sional phenomena as vortex sheets, whirlpools, convection cells, and internal 

waves. 

Turbulent motion is in many ways analogous to the random molecular motions 

responsible for the phenomena of viscosity, diffusion, and conductivity in 



gases. There ares however, several differences between these two types of 

motion. First, a molecule is under the influence of L  very small number of 

other molecules in the gas and each molecule moves about somewhat freely, whereas 

a fluid element in turbulent motion cannot move independently of the general 

motion of the other fluid elements. Turbulent motion is less random, or more 

ordered, than molecular motions. Secondly, turbulent motion requires a 

continuous source of energy to maintain it. If the air is thermally unstable, 

that is, cool air over warm air, the potential energy of the unstable arrange- 

ment can supply the turbulence. In a stably stratified region of the atmosphere, 

such as that above 85 km, wind shears provide the only source of energy for 

maintaining turbulence. 

According to standard turbulence theories (See Townsend (1956).) the eddies 

in a turbulent field have a spectrum of sizes ranging from the largest eddies, 

which are being supplied with energy from the source, through the intermediate 

sized energy containing eddies on down to the smallest eddies, which lose 

their energy by the effects of viscosity. Each eddy size interacts extensively 

only with other eddies of neighboring size so that eddies containing energy 

lose energy to only slightly smaller eddies which in turn lose their energy to 

stil] slightly smaller eddies, and so on until the smallest eddy size is reached. 

The effect of viscosity is to remove energy from only one size of eddies and not 

to redistribute it among other eddy sizes, although the viscous stresses can 

convert energy into heat or accelerate neighboring particles. 

"Big whirls have little whirls that feed on their velocity 
And little -whirls have lesser whirls, and so on to viscosity." 

- L. F. Richardson 



Previous investigators have employed two primary means of investigating 

the ionospheric altitude region near 100 km with regard to the existence of 

turbulence. These methods are (i) direct investigation of the turbulent 

velocity fluctuations and (2) investigation of the diffusion characteristics 

of materials released into the atmosphere. 

Up until the present time the first method has been used only in 

connection with radio echo observations of meteor trails such as those by 

Greenhow and Neufeld (1959a, 1959b, 1960). Here the instantaneous ho:liuntal 

wind is U + u where U is the mean horizontal wind determined, for example, by 

averaging all the wind determinations over a one hour period, and u is con- 

sidered to be the instananeous turbulent wind fluctuation. 

Accurate methods have now been developed for determining winds by 

triangulation and tracking of artificial chemical clouds released into the 

atmosphere by rockets.  (See Albritton, et al (1962)5 Justus, et al (1964a, 

1964b).) Using these methods it is possible to measure instantaneous wind 

velocities over a range of altitudes. Averaging of the wind data allows the 

determination of the north-south and east-west components of the mean winds, 

U (?.) and V (z), as functions of altitude, z. The vertical component of mean 

wind W (z) is considered to be zero. The instantaneous velocity components 

determined at a height z are then U (z) + u (z), V (z) + v (z), and w (z), 

where u, v, and w are considered to be the instantaneous components of the 

turbulent velocity fluctuations. Note that w is not necessarily zero. 

The equivalent notation (u., u , u ) -'3 sometimes used instead of (u, v, w) 

for the components of the turbulent velocity. 



SCALES OF THE MOTION 

Since the mean wind*! U (z) and V (2) are not static or uniform there can 

also be scales associated with the mean wind field.    Liller and Whipple  (1954) 

performed a """'ical autocorrelation analysis on the mean wind profile deter- 

mined from   -isuai meteor trails.    The vertical autocorrelation coefficient 

CL  (h z) is given by 

n    (&2)    =    *rM*)U(z*6z)l (1) 
^ {2 [U  {h)f 2 [U  (2 +  & Z)12P 

for the U component of the mean wind profile. A correlation coefficient 

for the V component i3 given by substitution of V for U in (i). The sums in 

(l) run over all pairs of data points separated by a vertical distance b  z, or 

the sums may be replaced by integration if U is considered as a continuous 

function. Physically, this analysis determines the degree of correlation 

between the wind profile and the wind profile displaced by an amount 6 z in 

the vertical direction. The values of the coefficient G should start at + i 

for 6 2 = 0, go to 0 for 5 z = ^ \, and on to - 1 for 6 z = -J- X, where X is 

the vertical "Vrave length" of the mean wind component profile. 

Liller and Whipple obtained an average value of 5.2 km for L , the 

di.lance 6 2 for which G = 0. This value is applicabl'» for the height 

region somewhere between 82 and 113 km. Using the Liller and Whipple wind 

data Mines (1960) subtracted a constant shear wind from the wind profile and 

multiplied the residual wind by ? height varying scaling factor to compensate 

for the increase in amplitude of the wind with altitude. After this alteration 

Mines obtained a value of 4.0 km for L «, the modified zero autocorrelation 

distance, 

8 



Wind data obtained from about 30 chemical  releases launched from Eglin 

AFB,  Florida during 1962 and 1963 has been put to vertical autocorrelation 

analysis.    The data was broken up into three height intervals 70-90 km, 

90-115 km,  and 115-170 km.    The representative mean altitude for each height 

range was 81 km,  104 km and 130 km.    Three types of zero autocorrelation lengths 

were calculated:    L    for unmodified data, L ,   for residual winds after sub- v vl 

tractiou of a representative constant shear wind,  and L _ for the residual 

winde multiplied by a height scaling factor. 

Figure 1  shows a typical set of results for Q. and G^.    They were obtained 

from a release occurring at 05:15 CST on 16 October 1962 and covering  an 

altitude range of 92-106 km.    The autocorrelation curve G    (& z)    rosses zero 

at L    = 6.6 km,  the corresponding value for G..  (& z) is 7.5 km. 

Figure 2 shows the average results for L ., L .,  and J, _ in each of the 3 v  vl     v2 

three height ranges. The Liller and Whipple value agrees well with the L 

data and the Mines value shows good agreement with the L _ data. All three 

L scales show an increase in magnitude with increasing altitude, the rate of 

increase being about the same in all three cases. 

Zimmerman (1964) has suggested that the vertical scale of the mean winds 

is connected with the scale height, H. A graph of H versus altitude is also 

included in Figure 2 for comparison. It appears that there is reasonable 

correspondence between the values for L and H in the height r&nge from 

90-105 km but the L value fall below the values for H in the height regions 

above and below this. 

Motion Spectrum Scale of the Mean Winds 

Another method for obtaining information about the scale of the mean 
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winds is the evaluation of the point ^ z = L at which the motion spectrum 

function is a maximum. The motion spectrum function, F {h  z), is obtained by 

averaging the square velocity differences, that is 

F (6 2) = < [ U (z) - U (z + 6 z) 12> (2) 

and similarly for the V component, where the average is taken over all data 

points separated by a height difference 6 2. 

Blamont and de Jager (1961, 1962) report results of a motion spectrum 

analysis of four sodium trails showing that for small values of & z, F (6 z) 

~ (& z) where n = 1.4+0.2. They also report that F (6 z) graphs show 

maxima which correspond with the vertical correlation length. Evaluation 

of the point & z = L at which these maxima occvjr thus provides another method 

of estimating the vertical scale of the mean winds. 

The chemical release wind data used in the vertical autocorrelation 

analysis was also analyzed in a similar fashion for motion spectrum features, 

the data being divided into three height ranges, roughly, 70 to 93 km, 93 to 

112 km and 112 to 143 km.  Figure 3 shows the results of a typical motion 

spectrum analysis. These data are from a release occurring 3 December 1962 

at 18:50 CST and are valid for the height region 112-143 km. It is seen that 

for small b z  the exponent n for the spectrum function power law is 1.71. 

A maximum in F(& 2) occurs at b z = 12  km, thus L is 12 km for this graph. 
5 

Figure 4 shows the averaged results of the evaluation of the maximum 

point L for each of the three altitude regions. The L values, like the L 

vertical autocorrelation scales, agree with the scale height, especially in 

the lower and middle height regions, L being somewhat less than the scale 

height in the upper region. 

11 
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Figure 4 also tabulates the average exponents observed for F (6 2). The 

exponent is almost constant over the altitude range examined, increasing only 

slightly with increasing altitude. 

Zimmerman (1962) has pointed out that the motion spectrum analysis by 

Blamont and de Jager (1961), yielding an exponent of 1.4 + .2 is in agreement 

with the shear turbulence theory of Tchen (1954) which predicts an exponent of 

4/3. Zimmerman also shows that the data of Blamont and de Jager support 

Tchenrs theory with regard to the energy spectrum. He calculates the average 

turbulent energy per unit mass E, given by 

E = |< U2 (z) > - < U2 (2 H- ?> z) > I (3) 

2/3 
and shows that E ~ 6 z '  for small b  z. 

Roper and El ford (1963) report that the motiori spectrum function F (& z) 

4/3 
is proportional to & z /  if only height separation is considered, but that 

2/3 
F (6 r) is proportional to & r '  if F is considered as a function of the total 

separation b  r. 

Analysis of chemical release wind data is presently underway to calculate 

F (& r) and E. Preliminary results tend to confirm the conclusions of Zimmerman, 

and Roper and El ford. 

Motion Spectrum of the Turbulent Winds 

Rased on work by Kolmogoroff (1941) it was shown by Batchelor (1947) that 

the turbulent motion spectrum function 

f (^_l) ^ < [ u (r) - u (r + b_r) ]2 > (4a) 

13 



obeys the relationship 

f ikJL) = Cj  (et ^ r)2/3 ( 1 * —^ 2 ) (4b) 
3 h T 

where C.  is an absolute constant,  6 r is the magnitude of 6_j; and b r,  is 

the component of 6 y in the direction of the turbulent wind component u.    See 

Sutton (1953) for a summary of the work of Kolmogoroff and Batchelor on this 

topic. 

For roost purposes $$ may be written as 

f (6 r) ~  (& r)2/3 (5) 

which is known as Kolmogoroff's Law. 

Turbulent winds determined from 13 chemical releases launched from 

Eglin Are, Florida from 1959 to 1963 have been analyzed to determine the 

applicability of (5) to the turbulence of the upper atmosphere. The results, 

shown in Figure 5, indicate that Kolmogoroff's Law is not followed for 

6 r > 1 km. 

The figure indicates that the law may be followed for & r < 1 km but 

the data points are too uncertain to be conclusive. Kolmogoroff's Law is 

based on the assumption of Isotropie turbulence and it is shown later that 

the turbulence may be Isotropie only 7':r eddy scales of 1 km or less. 

The Mixing Length Scale 

An analogy has been made between molecular and turbulent motions by 

introducing the concept of mixing length. According to the mixing length 

idea of turbulent motion, eddies transport momentum from one level of the 

flow to another and the transport of momentum from the level z to the level 

14 
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z + L^ produces a fluctuation, u, in the mean velocity, U, given by 

u = U(z + Lm)-U(Z).Lm^ (6) 

here 1^ is the mixing length.    Thus the magnitude of the mixing length can 

be found approximately by 

Lffl*lMT   * (7) 

8 z 

Figure 6 shows the averaged results obtained from several chemical releases. 

The mixing length scale is seen to remain fairly constant from 92 to 108 km at 

a value close to 0.8 km and then increase rapidly above 108 km to about 3.3 km 

at 112 km altitude. 

Scale of the Smallest Eddies 

Standard theories of homogeneous turbulence provide a method of evaluating 

the scale of the smallest,energy dissipating eddies. The size of these eddies, 

1 , should be given by 

le = if*) (8) 

where r\ is the kinematic viscosity of the atmosphere,  and e is either the rate, 

£s, at which the wind shears supply energy to the turbulence or tne rate, e  , 

at which the turbulence is dissipating energy as heat.    For Isotropie turbulence 

es is presumed to be approximately equal to e ,    The kinematic viscosity can 

be evaluated up to a height of 90 km from values given in the U. S.  Standard 

Atmosphere (1962) and above this altitude from the formula used for generating 

the Standard Atmosphere tables 

16 
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ft T3/2 2 

where ß = 1.458 x 10    , S = 110.4   K,  and T and p are the atmospheric tempera- 

ture and density in    K and kg/m . 

Actual evaluations of e.  and e    show that these quantities are not the 
t     s 

same throughout the upper atmosphere.  (See later sections of this report for 

evaluation of these parameters.) Tables 1 and 2 show values of 1 calculated r e 

from •,-. and e. for three altitudes. Both sets of values show that 1 is of s t e 

the order of 10 m and that 1    is increasing in magnatude with increasing 

altitude. 

TABLE I 

VALUES OF 1    USING E 

Height fj <>s 1^ 

(km) (m Aec) (m /sec )                                  (m) 

92 b.-7 0.30 5 

100 28 0.37 16 

108 120 0.46 44 

TABLE 2 

VALUES OF 1    USING s, 

Height                                       TJ el 

_Ikm]_                                 luLZsecl (m /sec  )                                  (m) 

^2                                            5.7 0.012                                       11 

100                                           28 0.14                                         20 

108                                         120 1.1                                           35 

_ _____ 

«- 



Correlation Scales of the Turbulent Volocitjes 

The general double-velocity correlation coefficient g. .   (x;  r) is giver, 

by 

< u,   (x) u.   (x + r) > 
9{i   (xj  r) =  1    9      1    " 5— 1   i,j = 1,2,3 1O) 

1J [ < u.2 (x)   X u 2 (x + r) > ]* 

where now x is the position vector (x, x?, x»,), r is the vector (r., r., r«) 

aod u , u_, u3 are the components of the turbulent velocity previously denoted 

by u, v, and w, and the mean values are taken with respect to time. As seen 

from the defining formula, the correlation coefficient g.. (x; r) serves as a 

measure of the degree of correlation between the turbulent velocity fluctuations 

u, (x) and u. (x + r), and therefore g.. (x; r) - 1 for r = 0 and g.. (x; r) 

approaches 0 as jrj approaches the size of the largest eddies. 

Of special interest are the particular set of one-dimeni,ional correlation 

coefficients g^ (x; r, 0, 0), g^ (x; 0, r, 0) and g.. (xj 0, 0, r) or, if 

the correlation coefficients are presumed to be independent of the position in 

the turbulent field, the coefficients may be denoted by g., (r, 0, 0), 

9li ^ r, 0^ and gii ^0♦ Ü' r^ If the correlation coefficient is also 

Isotropie the coefficient may be characterized by the single function g (r) 

given by 

g (r) = g11 (r, 0, 0) = g22 (0, r, 0) = g33 (0, 0, r) 

An integral  scale of the turbulent motion,  L.   is defined to be 

00 

L.  = f    g  (r) dr (11) 
1      «J 
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The scale of the largest eddies mav be defined as the point r = L at which 

g it)  is first zero, or, more loosely, the point L at which an extrapolation 

of g (?•  ^ zet) should g (r) remain positive. 

It car. be shown (Taylor (1938) ) that to second order in r, g (r) is 

given by 

2 < u2 > L 2 
P 

(12) 

where u is the turbulent velocity component in the appropriate direction to 

correspond to r, and 

L   = 
P 

"        2      1* 2 < u   > 

Lor      .i 

(13) 

is the dissipation length parasneter. L ic considerably larger in magnitude 

than the scale of the smallest, energy dissipat ng eddies. L is a length 

corresoonding to eddies which contain • negligible portion of the total energy 

and «fd responsible for a negligible part of the total dissin v.ion of energy 

as hea*. 

Towrvsend (1956) gives a relation showing that the scale of the dissipating 

eddies^ her*., denoted by 1,, Is given by 

2 
wTmi (14) 

As an dpproxisMttioh to o^   itf 0, 0),  g^   (0,   r, 0) and g..   (0, 0,  r) 

for i -' 1, 2 (th® hQt'izantal co8|>onents), Greenhow and Neufeld (1959h) 

Cf*CUi8t#d 

mmmmm.4mt^^^^rf*^.^m^ 
-^^~i---:^~-r^^Bs^.!-i--~-.L  



S [ u« (Ä) u' (x+ r) ] 
g (r, 2) =    ^ (15) 

[ Xu'2 (x) I u'2 (x + r) ]^ 

where, here, u' is +he horizontal component of the turbulent velocity as 

defined in the introduction for the meteor tvpe data, r is the vector with 

magnitude r and vertical component z, and the summations extend over all 

positions x at which wind determinations were made. 

Greenhow and Neufeld plot their determination of g (r, z) versus both 

r and z and- conclude from these graphs that t' e vertical scale of the largest 

eddies is 6 km. They report that consideration of echo pairs of the same 

height separation but different horizontal separations leads to a horizontal 

rate of decav in the correlation which indicates a horizontal scale of the 

order of 100 to 200 km. Usina 150 km for their value of I. and 2.4 km as their 
o 

value of L , they deduce from (14) a size 1 = 50 m for the smaller eddies, 
p c 

Wind data from 13 chemical releases launched from Eglin AFB, Florida 

between 1959 and 1963 have been used to calculate correlation coefficients 

analogous to the Greenhow and Neufeld approximation by computing g (r, z) by 

(15), where now u1 stands for the horizontal component of the turbulent velocity 

2        2 ■ih 

(u    + v  )'' with a + or - sign attached according to whether the magnitude of 

the instantaneous wind is greater or less than the magnitude of the mean wind. 

A horizontal correlation coefficient g (1, h) can be defined by 

^ [ u'   (x) u'   (x + r') ] 
9 (r, h) = — 5  (16) 

[ 2u^ (x) Z u,Z (x + r')  ] 

whoro r1 is a vector with magnitude r and horizontal component h, and the 

summation extends over all positions x for which wind data were obtained such 

that z, the vertical component uf r', is less than 1 km. Thus g (r, h) is an 
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approximation to g.. (r, 0, 0) or g.. (0, r, 0) and should yield information 

concerning the horizontal scale of the eddies. 

Figure 7 and 8 show the averaged results of g (r, z) versus z and g (r, h) 

versus h. Both coefficients tend to zero at about 6 km, confirming the 6 km 

vertical scale deduced by Greanhow and Neufeld but indicating an equal 6 km 

horizontal scale instead of their 100-200 km value. 

The horizontal scale of the mean winds, that is the horizontal distance 

over which the mean wind profile maintains some degree of correlation, is 

certainly greater than 100 km. Simultaneous wind data obtained from separate 

chemical release clouds some 100 km apart indicate that this scale may be ol 

the order of 1000 km, since the wind profiles still have i positive correlation 

of about 0.9 for this 100 km separation. It could be that the horizontal scale 

that Greenhow and Neufeld reported was more nearly the scale of the mean winds 

than the scale of the turbulent winds. This discrepancy might result froP 

their method of defining the turbulent components, which differs from the 

definition used with regard to the chemical release wind determinations. 

Correlation coefficients similar to those in Figure 7 and 8 but calculated 

by using w, the vertical component of the turbulent velocity, in (15) and (16) 

instead of the horizontal component do not show a similar fall off in the 

correlation. Further investigation of this is planned and it is also planned 

that as a next approximation to the actual one-dimensional correlation co- 

efficients the quantities g (r, h) and g (r, z) can be evaluated using complete 

set of components u, v, and w in (15) and (16) instead of only horizontal and 

vertical components u1 and w. 

If the data from Figure 7 is used to estimate the integral scale of 

turbulence L. one obtains a value L., =* 1 km. The dissipation length para- 
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meter L is the point where a parabola g (h) = 1 - z /L 2 passes through 
p P 

zero. If the data point z = 0.5 km, g = 0,27 is used from Figure 7 then 

-/  *2   v L \ 

This value disagrees somewhat with the Greenhow and Neufeld value of 2.4 km 

because the data points of their correlation curve approach the value g = 1 

more closely for small z. The fact that the data points seen in Figures 7 and 

8 do not seem to approach g = 1 for z and h approaching zero may be due to the 

fact that an extimated r.m.s. error of about 3-5 m/sec is present in all of 

the wind determinations from the chemical releases whereas the r.m.s. value of 

the magnitude of the' turbulent winds is about 16 m/sec. Since the errors con- 

stitute such a substantial percentage of the fluctuations being observed there 

may be some degree „f destruction of correlation because of the errors. How- 

ever it is interesting to note that Figures 7 and 8 show the same quantative 

shape as correlation coefficients calculated by Townsend (1956) for a field 

of turbulence in which there are only two distinct eddy sizes. 

If the values L = 0,6 km and L = 6 km are used in (14) the resultant 
P o 

value for 1 is 18 m. This value fits into the range of values shown in 

Tables 1 and 2 for the size of the smallest eddies. From the fact that a 

scale L of about 6 km results from both Figure 7 and Figure 8 data it would 

seem that the turbulence is almost Isotropie, however, Dougherty (1961) has 

shoim that the turbulence should be Isotropie only in the range from 1 to 

1., The magnitude of 1 , the scale of the smallest eddies has been seen to be 

about 20 m, and 1. is given by 

^g 
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where e , again is the rate of turbulent energy dissipation and CD is the 

n n n 
Brunt Vaisala frequency given by 

y P 

where T is temperature, g is the acceleration of gravity,  z is the vertical 

coordinate and C    is the specific heat at constant pressure.    The result (18) 

is based on Bolgiano's theory (1959,  1960) which hypothesizes that the Isotropie 

inertial subrange exists only for scales between 1    and 1., and that an anisotropic 

bouyancy subrange exists for srales between 1.   and 1..     Data from which N can 

be computed are available in the U.  S.  Standard Atmosphere  (1962).    Using these 

-2        -1 
values a   is about 2.4 x 10      sec      for 90 km < z < 115 km.    Using this value. 

Table 3 lists values for 1.  for several altitudes, as determined by values of 

S.   from data presented later in this paper. 

TABLE 3 

Hfc 

Height S. 1. 

(km) (m2/sec3) (km) 

90 .0065 0.022 

100 O.lo 0.097 

110 2.8 0.45 

115 13 0.97 

Thus, if the values of Table 3 are correct, the turbulence can be Isotropie 

only for the smaller size eddies and indeed there is essentially no Isotropie 

subrange below about 90 km.    However, many globules in the height region 92-108 
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km remain approximately spherical up to sizes of 1km or greater, but some of 

the globules larger than 1 km do become stretched into elliptical shapes. 

Therefore a more realistic value for the scale of isotropy may be about 1 km 

throughout the entire height region 90-110 km. 

Dissipation Length Parameter vrom Turbulent Winds 

Actual data on the turbulent wind components u, v and w allow the cal- 

culation of the dissipation length parameter, now called L , by the relation 

(13) 

r   2    i* 
i  _  2 < u^ > 

t "  < C M )2 > 
9 x 

(20) 

and similar relations obtained by replacing u by v or w and x by y or z. 

Here the partial derivatives have to be estimated by ratios of finite differences 

A u and A x. 

Wind data obtained from 13 chemical releases shows an average value for 

L of 0.65 km, in very good agreement with the value of L , the dissipation 

length parameter determined from the correlation coefficient data. 

Globule Size Scales and the Globule Cut-off Altitude 

From observations on sodium trail releases near 100 km Blamont and de 

Jager (1961, 1962) report globules ranging in size from 70 meters to 1 km, 

with an average size of 0.5 km. Globule size data has been obtained from 13 

checdcal releases (primarily Cesium Nitrate-Aluminum) launched from Eglin AFB 

Florida between 1959 and 1963. Globules smaller thon about 200 meters could 

not be measured from the photographs that were taken, but data on the growth 
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of 209 separate globules with diameters greater than 200 meters was obtained. 

Five of the releases had sufficient numbers of globules so that a size spectrum 

could be determined, that is, the number of globules of a given size could be 

plotted against globule diameters. 

All five of these size spectrum plots have a peak at 0.7 km, and one 

has an additional peak at 1.2 km. The peak at 1.2 km occurs because of 

larger globules appearing in the height region lO^-lOS km. A large number 

of the individual growth curves of the globules level off at a diameter of 

about 0.7 km (or at 1.2 km for the higher ones) and then continue to increase 

(note Figure 9). Thus the reason for the peaks in the spectrum plots is that 

the growing gxobules tend to spend more time at this leveling off diameter 

than at other sizes. This leveling off scale for the globules, L.» illustrated 

in Figure 10, increases from 0.4 km at 97-£ km altitude to 0,75 km at 99 km and 

remains constant until at 106 km it begins to increase again and reaches 1.6 

km at a height of 112 km. The mechanism tha : produces this leveling off in 

the growth curve is not known at the present. 

The globular appearance of the chemical releases ceases at some altitude, 

H , called the turbopause altitude, between 100 and 115 km. Both point 

releases (i.e. chemicals released explosively at one or more points) and 

trail releases which covered an altitude range including H exhibited globules 

on that part of the cloud below H and were smooth above H . Blamont (1960) 

reported H to be at 102 km, and Manring (1962) at 102 + 4 km. A total of 

56 observations on 19 chemical releases showed H to lie between the limits 

96 and 115 km with sn average of 106 + 4 rms. 

Two of the releases produced one trail as the rocket ascended and another 

trail as the rocket descended. The up trails of these two releases showed 
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t 
H to be 106.5» and 1 7.0 km, and the down trails imJicated H values of 104.3 

and 105.2 km. In both cases H on the down trail showed a shift of 2 km down- 

ward with respect to the up trail. This may nnt be significant because solid 

particxes which followed the trajectory and reentered the atmosphere made the 

down trails at H more difficult to observe and so the down trail values are 

much less accurate. I' is interesting to note, however, that there appears 

to be about a 2 km downward shift of the wind pattern of the down trail with 

respect to the up trail, and this apparent shift in H may be associated with 

Ute similar shift in the wind profile. 

lime Scales of the Motion 

In addition to size scales of the motion one can speak of time scales 

of the motion. The time scale of a particular size scale of eddy would 

be the time over which that size eddy maintains its identity, or the 

time over which the turbulent velocity fluctuations maintain some degree of 

correlation. The size scale, L, the time scale, t1, and the characteristic 

velocity fluctuation, v, of the eddy should be related by 

L = v ^ (21) 

according to Batchelor (1953). 

The time correlation coefficient of, say, tho u component of turbulent 

velocity would be 

g (6 t) = ^ " (0 u (t ^ tU (22) 

[ zu (t) zu2 (t + 61) r 

where the summations extena over all observations separated by a time interval 

b  t. 
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Greenhow and Neufeld (1959b, 1960) report i-esults of an analysis using 

(22) to calculate time correlatio.i of the turbulent winds.  In this analysis 

the winds were averaged over twenty minute intervals, a harmonic analysis 

was made of these winds to determine prevailing, diurnal and semi-diurnal 

components, and the turbulent winds were defined as the residual from the 

20 minute average winds after subtracting off the harmonic functions. The 

first zero of the time correlation coefficient is at & t ^ 100 min according 

to the Greenhow and Neufeld data. This value, they point out, verifies (21) 

if one uses L = 150 km and v ~ 25 m/sec which are appropriate figures for 

the large eddies according to their data. 

Again, however, the definition of turbulent winds employed by Greenhow 

and Neufold may mean that their value for t applies not to the turbulent 

wi^ds but more closely to tne mean winds. The data of Greenhow and Neufeli 

(1956, 1960) as well as other meteor investigations indicate that, the semi- 

diurnal component is the one of largest magnitude. This is confirmed by 

observations by Rosenberg and Edwards (1964) of winds throughout the night 

determined by a series of chemical release trails. The semi-diurnal component, 

having a period of 12 hours, would have a zero on the time correlation curve 

for 6 t = 3 hrs = 180 min. Actual calculation of the time correlation co- 

efficient from the chemical release wind data shows that the first zero on 

the correlation curve of the mean winds is at abcut 200 min. 

If we assume (21) is valid and use L = 6 kn and v = 15 m/sec as indicated 

by the chemical release data then t, ^ 400 sec.  Investigation is underway 

to determine if motions of 'chis time scale are detectable. 

The time scale, t, of the smallest eddies can be determined by an equation 
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fö 'i cögiplstftentary to  (8) 

(n/s )1 (23) 

where, a« in (8), i\ is the kin@mat.ic viscosity and z is either *t. the 

energy dissipated as neat, or z    the energy supplied by the shears. Tables 

4 and 5 show several values of x deduced from both s and e. for the height s t 

range 92-108 km.    Both tables show T to be on the order of 10 sec over this 

height interval.    The values given for the velocity fluctuations, ve, of the 

small eddies are calculated from '?!) using the appropriate size scales from 

Tables 1  and 2. 

TABLE 4 

VALUES OF T FROM s 

Height 

(km) im /sec} 

c 

(  2/S 3x (m /sec ) 

T 

Xseci 

V 
e 

jm/sf-J. 

92 5.7 0.30 4 1 

100 28 0.37 9 2 

106 120 0.46 16 3 
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TABLE : 5 

VALUES OF T FROM s 

Heiqht 

(km) 

1 
2 

(m /sec) (m2Aec3) 

T 

.kii 
V 

m/sec) 

92 5.7 0.012 22 0.5 

100 78 0.14 14 1 

108 120 1.1 10 3 

SUMMARY 

Table 6 and 7 give a suirmary of the various size scales of the motion 

and tabulate their magnitudes or range of values in the indicated height 

interval.    If no height interval  Is indicated the applicable interval  is 

probably 90-110 km. 

TABLE 6 

SIZE SCALES OF THE MEAN MOTION 

Scale Description 

Horizontal Scale 

Vertical 
Autocorrelation Scale 

Symbol Used 

"vl 

v2 

Motion Soectrum Scale 

Maqni tu de 
(k i) 

150 - 1000 

4.3 - 8.6 

4.1   - 6.5 

2.4 - 4.5 

5.5 - 12.0 

Heiqht Range 
(km) 

~ 90 - 140 

81 - 130 

83 - 127 
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The motion has been separated here into mean winds and turbulent fluctuat- 

ions.    However if no restricting conditions were imposed on the  flow    field. 

motions considered here as mean winds could (after substracting off any tidal 

or other non-random components) be considered as the turbulent component for 

higher order size and time scale eddies. 

If a fluid element is displaced a small  amount from its equilibrium 

position,  it experiences a restoring force which produces a harmonic motion 
ii    ii  ii 

with a natural  frequency oo ,  the Brunt-Vaisala frequency,  given by (19), 

Layzer (1961)  states that if the lifetime t.   of a  turbulent eddy is greater 

than 2Tt/cü ,  then it is possible to follow a typical  fluid element throughout 

a complete gravitational oscillation.    But if a fluid element retains its 

identity for such a length of time the motion is not true turbulence.    Again 

-2        -l 
using the vaxue co   = 2.4 x 10   " sec " we see that motions with time scales 

y 

great than about 260 seconds would not be true turbulence. 

This value of CD   may be in error since it is based on standard atmosphere 

conditions and an extrapolation of C    from the values for air at low pressure 

laboratory conditions.    Table 8 shows the values of öT/dz and g/C    which are 

the two least accurately known terms in co .    It is seen that in the    inqe 
9 

90-115 km the g/C    term contributes more heavily to co    than the   31/5 z  term. 0 9 

Thus a large uncertainty in g/C    would represent a correspondingly large 

uncertainty in co .    Consequently it may be that values of t, ~ 400 sec, 

previously deduced from the chemical  release winds,  would represent true 

turbulent motion.    But it would be difficult to reconcile a turbulent 

motion with a time scale of 100 minutes or more with the above arjument. 
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TABLE 8 

|— AND g/H VERSUS HEIGHT 

d.T 
a z c 

z p 
(km) (oKAm) (0^,/km) 

90 0.00 9.54 

95 2.94 9.53 

100 3.85 9.51 

105 4.70 9.49 

110 7.00 9.47 

115 9.25 9.43 

It seems quite likely that the features of the mean winds can be explained 

by a combination of tidal waves and other ordered motion such as the gravity 

waves proposed by Mines (1959, 1960). If this is the case then true turbulence 

will be confined to the size and time scales discussed here ?• being associated 

with the turbulent, motion. Further work must be done, however, to clarify 

the exact nature of the motions here described as the mean winds, and to 

resolve these motions into tidal wave, gravity wave, and other ordered motions 

which may contribute to the total mean winds. 

ENERGY BALANCE OF THE MOTION 

If the flo»/ is statistically steady the energy balance equation is 

e = e + e+ (24) 
s   g   t 
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where e is the rate per unit mass of atmosphere at which the turbulence extracts 

energy from the wind shears of the. mean flow, e is the rate per unit mass of 

atmosphere at which the turbulence doss work against gravity, and et is the 

rate per unit mass of atmosphere at which turbulent energy is dissipated as 

heat by viscous effects. The rate of supply e is given by 
s 

3 U. 
E    =  2 Z u.   u.  r—* 

S       ij     1     jaXJ 
(25) 

where the U's are components of the mean velocity,  the u's are components of 

the turbulent velocity and the x's are coordinates,   x_ being the vertical 

coordinate,  and x,   and x- appropriate horizontal coordinates.    An order of 

magnitude relations for e    is 

S^L (26) 

where v and L are the characteristic turbulent velocity and scale of the 

energy containing eddies. 

The mixing length theory provides an approximate relation for e 

e = u« L GO ~ ^ 
g   3 m g 

2  Ul U3 % 

R) 
(27) 

it n n 
where L is the mixing length given by (7) and oo^ is the Brunt-Vaisala 

m 

frequency given by (19). 

According to Lamb (1945) the general expression for e. is 

Et = n ' p)' ■ iR • ^ (28) 

& 
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where tj is the kinematic viscosity and 2  indicates summation over a full 
eye 

cyclic permutation of indices.  If the atmosphere is assumed incompressible 
8 Ui then 2 ■=  = 0, from the continuity equation, so the last term in (28) 

i   Xi 

would disappear.  If, in addition, the turbulence is assumed to be Isotropie 

then it can be shown (Taylor (1935) ) that 

i a u   %2    | a u  72     a u 
e. = 

which can be reduced to 

2   1^1 
ax2 

(29) 

*      2      \axj (30) 
aul v2 

'2 

since the terms in (29) are not all independent for an Isotropie field and 

incompressible flow. 

The turbulent wind components of wind data obtained from chemical  release 

clouds may be used in (25) and in (2?) through (30) to evaluate e    and e    and 

give three separate evaluations of e..    For this procedure averages such as 
■ 

u. u. are obtained by averaging over all wind determinations in a finite 

height interval, usually about 2 Km,    The derivatives are approximätru by 

ratios of finite differences & u./A x..    The results of these evaluations of 

the energy terms,  shown in Figure 12, will be discussed later in this report. 

The maraier In which s. cl^ud of material diffuses after injection into 

the turbulenre offers another method for evaluating s ,    Cote  (1962) summarises 

the theoretical results of sever&i authorSv Lin  (i960), Tchen (196.1), Boigiano 

(1959) and Roberts  (I960; for the dispersion law that should be followed by the 

diffusing mater?.Tl.    Thr. various disp^rsiun relütlons are 

^™*»^„ww^JSWJ^mo, _,.„„„_ r-.^BHaaMBMsaawsEM**^^ 

■     .       :■ 



< r2 >   ~    (t - t  )2 

o 

<r2> et  (t -  ^ 

< r2 >    ~    et2 (t - to)
4 

< r2 >    -    Z (t - t  ^ 
o 

< r2 >    ~    et4  (t -  to)
6 

(31) 

(32) 

(33) 

(34) 

(35) 

where < r    > is the mean square separation between particles of the injected 

material,  t    is some appropriate reference time, presumably the time of 

injection,  and Z in (34) is a function of the atmospheric potential density 

fluctuation and the vertical  turbulent velocity fluctuations.    The relations 

(31),   (32),   (33), and (35) result from the use of different forms of the 

theoretical energy spectrum function, which gives a description of the 

distribution of the energy within the energy containing eddies.    Formula  (34) 

is based on Bolgiano's theory, mentioned in a previous section. 

The relation  (32) was first deduced by Batchelor (1950)  from Kolmogoroff's 

similarity hypothesis.     It is this form of dispersion which presumably holds 

If Kolmogoroff's principle is valid.    The complete relation for describing 

the diffusion of a cloud injected into the turbulent field would be 

A2       16 {*       *   ^3 

d    =    3   Et  (t " V (36) 

where d is the diameter of the cloud, or trail of material. 

Figure 11 shows a plot on Ij-g-lcg scale of the diameter squared of a 

globule versus t - t . This is the growth curve for the same globule shown 

in Figure 9.  It is seen that the points at early times when the globule is 

going through the leveling off phase do not follow a power law, but above the 

leveling off size the growth follows the relation (36) closer than any other 
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of the diffusion formulas,  the actual exponent being 2.62 in this case. 

Each of the fonmUas (31),   (32),   (33) and (35) is of the form 

-2 .     _ a-2 <r   >~et
a-2 (t - to)

a. 
(37) 

If the 16/3 factor of (36) is assumed, a least squares fit of globule growth 

data to the formula 

■i^ _ ,^7^ _ a-2 /.  . \a <r = 16/3 e*"2 (t - t ) 
t o o' (38) 

can be made by assuming some reasonable value of t .    This procedure allows 

solution for both a and e+.    The average value thus obtained for a was 3.0 

+ 0.4 rms.    The resultant e.  data are shown in Figure 12, 

Data were available primarily in the region from 92-108 km for using 

in (25),   (27) through (30), and (37),    A small amount of data were also 

available in the range 108-112 km.    Functions of the arbitrary form e = exp 

(a + bz) were fit through the data obtained by each of these procedures. 

The resultant curves,  straight lines on a semi-log plot,  are shown in Figure 

12.    The curves from each of the three turbulent wind methods for evaluating 

et disagree among themselves at some altitudes by about a factor of five,  and 

the results from (29) and (30), which should yield identical values of e.   for 

Isotropie incompressible flow, disagree at some altitudes by about a factor of 

2.    The curve for e.  obtained from globule growth rates is in rather poor 

agreement with the other e. data, especially at low altitudes.    There was 

considerable scatter, however, in the data points for e.   from globule growth, 

some of the individual data points actually falling in the region of the other 

three c    curves.    All of the four et curves show et increasing rapidly with 
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Figure 11.    Globule Growth on Log-Log Scale - Diameter 
Squared Versus Time. 
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altitude, changing by two orders of magnitude or more in 15 km. 

The curves for e and e show comparatively little variation with 
s     g 

altitude. The actual curve for e is greater in magnitude than e from 985- 
g s       * 

km down, which is physically unreasonable, but it should be realized that 

each of the curv0s e and c should r. ve an uncertainty of about a factor of 

two at each altitude. This e > e anomaly can be rectified we]1 within 
g  s 

these limits of accuracy.  It should be noted that an additional estimate 

of e.. obtained by subtraction of the e curve from the e curve by 
t ' g s      ' 

e = e - e (39) 
t   s   g 

agrees reasonably well with the other values for e in the height range from 

100 to 108 km. 

The point at which the e. curve intersects the e curve should reoresent 
t s ■ 

the absolute upper limit for the existence of turbulence, since at this inter- 

section point the rate of energy supply would be equal to the rate of energy 

being dissipated by viscous effects alone. The heights of these intersection 

points for the various e curves range from 104 to 109 km, with 107 km represent- 

ing an approximate mean. This 107 km altitude agrees with the observed average 

value of 106 km for the turbopause altitude. 

If the values v = 15 m/sec and L - 6 km are used in (26) as the appropriate 

values of rms turbulent velocity and scale, as determined from the chemical 

release wind data, one obtains the value e = 0.6 watts/kg. Similarly if one 

2/2        2      ,       ,„-4        -2 uses in (27) mean values of u    u    = 11 m /sec , co     = 6 x 10      sec"" and 

dU./öx_ = 20 m/sec km,  which are approximate average values for these quantities 

througnout the height range 90 -  110 km,  one obtains e    =* 0.3 watts/kg.    Both 
y 

4 3 



of these estimated values ifrt© fairly mil  with the curves for E    and t    in 
s g 

Figure 12, 

Figure 13 shows a temr«rv by Lett.au  (1961) of values obtained for r 
t 

from diffusion and wind profile observations 'n the altituoe range from 1 cm 

to 40 km*    The figure siso illustrates the e,  variation versus altitude as 

deteifflinad ixom the chemical  release diffusion and wind data in the approximate 

height range 90 to 110 km.    It "appears f'rofln rigure 13 that §    continues to 
t 

decrease with decreasing altitude below 90 km, diminishing by an additional 

3 or «sore orders of magnitude from 90 to 30 km. 

CRITERIA FOR THE ONSET OF TURBULENCE 

Reynolds Critgrior^ 

Working on flow experiments in long,  straight pipes,  Reynolds showed 

in 1883 that the motion oecame turbulent when --.he Reynolds number exceeded 

n crlti;.ai value (s* 2000).    The Reynolds mmoQT is defined as 

■ i    ■■"■■ e (40) 

here u is f © flow velocity, d is the pipe diameter and i] is the kinematic 

viscosity. 

In the free atmosphe~e it is stability that primarily determines whether 

or not turbulence is present. If temperature decreases with altitude so that 

the region is yravitationally unstable the velocity gradient will almost never 

be so small that turbulence will be inhibited by a low Reynolds number. When 

the region is gravitationaliy stable the flow will be laminar in weak velocity 

gradients, but if the velocity gradient is sufficiently l^rge the region will 

be turbulent in  -ipiV- of the gravitational stability. 
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Consequently the Reynolds number has little bearing on the existence 

of turbulence in the height region above 85 km and we must examine other 

criteria for the onset of turbulence. 

Richardson's Crit.r- '.on 

Richardson's theory (1920) is based on the assumption that if e. > 0 

turbulence exists.    From (24) it is seen that this condition is equivalent 

to e_ - e    > 0 or e /e    < 1.    Using the approximation s        g y    s 

.. = i«i H («) 
Richardson's forms for e    and £    are 

s g 

es = KE   a>s
2 (42) 

t$ = Kc   a)g
2 (43) 

where oo   =   dU/62.    From the equations (27) and (41) it is seen that K    = 

wL , and K_ = uw/(öU/^z) or, using the mixing length theory, Kp is defined by 

K    =L 2 (^   )2. . (44) E       m      a z 

Richardson assumed K = K to  that the condition e /e < 1 is equivalent to 

the Richardson number, R,, being less than 1, where the Richardson number is 

defined by 

R. = -^ (45) 
"s 

Therefore the ^ichardson criterion may be outlined as 
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R.   < 1 turbulent 
i 

R.  > 1 laminar. (46) 

Townsend's Criterion 

Townsend  (1957) developed a ir^re elegant criterion for turbulence based 

on an analogy between turbulent motion and Br^wnian motion.    For this theory 

the quantity co.  defined by 

e   = (u   + v   + w ) cü. (47) 

is important. Using the Brownian motion analogy, Townsend arrives at the 

result 

^ = Is; • w 
Using this in (43), e may be written 

2 

e =ik w2 -^ 

wrfiere k    = 1 if the Brownian motion analogy holds exactly,  so k    should be a 

constant close to unity. 

Equations  (47) and  (42) are rewritten as 

£t = | kt w2 cot (49) 

and 

es = i ks w2 "s (50) 

where the coefficients k and k are of order unity. 
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Defining the Richardson flux number,  R,» as 

Townsend derives the result 

(1  " Rf)R
f =    16    ^    Ri W 

k 
s 

The left hand side of (52) is a minimum at R,. - jt and at this ooint R. is the 

critical value R. aiv<?n by 
ic - 

t <*. 

4£.., /  ■ 
Ric " 75 i k' 'i*0"00' ^■3I 

9    t 

T?"e flow will be turbulent foi 9x1  R. < r;. » i       ic 

Layzer (1961) extended the ideas of Tom^end by ■imposlno the additional 

restriction o),  > ü> .    This is the same condition t, < 25>:/a)   discussed in the t        g I '  g 

sectidn on time scales of the motion.    For this to be true it is necfisssry tha 

the condition 

k 
Rf< rrV ^ 

9       g 

be true.    Combining (52) arid (54), Layzer derives the conoition 

Ri<Ric^f ^TV^
2
 *0-05 ^ 

9 9 

wheje, again, the flow will b« turbulent for all R. < R. . 
lie 

Observations en Chemical Release gind Data 

s*^J 

Townsend s and Layzer s interim are designed to eliminate quantities such 

as uw and u ^hich are considered unknowns* The mathematical steps of these 
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theories can be /* trat-ec* snaking only the assumptior 

where k.  iö of erd^r u:üt-/c    Starting with equations  (27}f   (^l),  and (47),  if 

ail  thf< quantities involving tuibüient velocity fluctuations are retained then 

the modified Toansend and Luyzex criteiic- are 

^u    ♦• v    + w  ;k .w 
j 

(57) 

f  uS + v2 + Iä?2(1 + 2k.)  1 
.i 

Each of th«*B critical values is on the order of 0.01  for th« wind data 

oDtained from the chemical  releases. 

The average Richardson number in the height t^.je 90-110 km is on the 

order o^ unity,  however,  sc that there is little chance of satisfying TownsendJi 

or Layzer.'s cr.iteris3 in this altitude region.    The percentage cccunance of 

Richardson number less than one have beer, calculated for the chenncsl  release 

wind data and the results- are shown in Figure 14.     It is seen that the roaximuft 

occ-s-rrance Is around 106 kmt It   being less than 1 about 35 percent of  the time 

there.    At ,125 km the occurrance of R,  < 1 has fallen virtually to zBro and 

at 90 kti\ R.   is less than '  only about 10 percent, of the time« 

CONCLUSIOMG 

From the data presented here it seems that the turbulence observed up to 

altitudes near 105 km Is ambient turbulence produced by wind shears, and is 
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Isotropie only for scales =» 1  kr» or less. The smallest eddies arc on the order 

of 20 m  in size with characteristic velocities and times of about 2 m/<-ec and 

10 sec. The largest eddies are about 6 km in size with characteristic 

velocities and tiaes of about 15 m/mc  and 400 sec. The winds which over short 

time  intervals are considered to be the mean winds may have turbulent components 

of larger horizontal scale than 6 km, and longer time scale than 400 sec, hit 

probably tidal waves and gravitational «aves account for most of the fluctuat- 

ions of this scale. 

There are four parameters of the turbulence that depend on the factor 

© c They arei 1) the scale of isotropy, i.f in (18); 2) the time scale, 

t 5 of gravitational oscillations given by t = 2it/b ; 3) the gravitational 
9 9     9 

term in the energy balance, e , in (27}| 4) the Richardson number, R., in 

(45). The conclusions of the previous paragraph would be strengthened if 1 

and t were larger and If R, and i were smaller than the calculated values, 
9 3-9 

Ail of these conditions would require co   to be smaller than the calculated g 

value. It may be that equation (19) for GO , which is based on standard 

thersiodynamic laws, is not applicable to the rear plasma conditions of the 

100 km height region, or if (19) is valid, the presumed values of C may 

not be applicable at this altitude* 

The upper height limit of turbulence of size scale less than 6 km 

usually occurs within + 5 km of the 105 km level,. From the data presented 

here it appears that this cutoff altitude, or turbopause, is caused by the 

.-ate of energy supplied by wind shears becoming too «all to maintain the 

turbulence in the presence of dissipation rates which are increasing rapidly 
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The Batchelor form of turbulent, diffusion (32) has been shown as most 

corresponding to observed growth rates of individual globules.    The actual 

exponent observed for the diffusion power law was 3.0 + 0,    rms.    Cote (1962) 

has measured diffusion rates of chemical release trails.    He reported that, 

without further study, it couJd not be shown conclusively whether or not the 

2        2 diffusion power law observed for the trails was different from the d   ~ t 

relation expected for diffusion of a turbulent wake or turbulent jet.    Wake 

or jet type diffusion would presumably be produced by rocket generated turbul- 

ence. 

Ho turbulent diffusion measurements on the expansion of complete trails 

have been made yet by this group but work is underway on such measurements. 

If an exponent of 3 were observed for diffusion of trails as well as of 

individual globules, this would definitely rule out the possibility that the 

observed turbulence is in any way produced by the rocket or the ejection 

mechanism. 

Further investigations of thp spatial and time correlations of the 

turbulent wind components are planned.    In particular, more accurate 

approximations to the one dimensional correlation coefficients g.. will 

be evaluated, and a search for motion fluctuations of the expected time 

scale of 400 sec will be carried out. 

Preliminary results indicate that Tchen's theory (J954) is applicable to 

the motion and energy spectrum of the mean winds for vertical separations, 

but that a Kolmogoroff motion spectrum may be followed if total spatial 

separation is considered in the evaluation of the spectrum function. 
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In addition, it is hoped that future work can establish what portions 

of the mean wind features are attributable to tidal wave, gravitational 

wave, and possibly large scale turbulent components. 
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